21 research outputs found

    Bit-pairing codification for binary pattern projection system

    Get PDF
    In a previous work, we proposed a new binary-light projection mechanism that had a much reduced system size that made it particularly suitable for 3D shape inspection of semiconductor products. The inspection speed of the mechanism was governed by the number of required images which also equaled the number of shiftings of the grating. In this paper we address how inspection speed could be gained, i.e., how the number of required images could be reduced, by the incorporation of two neighboring bits in the codification of each scene element. We provide an optimal design of such a codification strategy. A solution to the shifting strategy optimization is also proposed that is applicable to any given binary patterns. Theoretical analysis and real image experiments are presented to illustrate the workability of the solutions. © 2006 IEEE.published_or_final_versio

    Reference-free detection of semiconductor assembly defect

    Get PDF
    This paper aims at developing a novel defect detection algorithm for the semiconductor assembly process by image analysis of a single captured image, without reference to another image during inspection. The integrated circuit (IC) pattern is usually periodic and regular. Therefore, we can implement a classification scheme whereby the regular pattern in the die image is classified as the acceptable circuit pattern and the die defect can be modeled as irregularity on the image. The detection of irregularity in image is thus equivalent to the detection of die defect. We propose a method where the defect detection algorithm first segments the die image into different regions according to the circuit pattern by a set of morphological segmentations with different structuring element sizes. Then, a feature vector, which consists of many image attributes, is calculated for each segmented region. Lastly, the defective region is extracted by the feature vector classification. © 2005 SPIE and IS&T.published_or_final_versio

    A three-dimensional imaging system for surface profilometry of moving objects

    Get PDF
    Non-contact optical imaging system design and the corresponding surface profilometry algorithm are critical components in various metrology applications, such as surface inspection of semiconductor components on the production line. For such challenging industrial applications, the most important considerations are often automation, precision and speed of the inspection. In this work, we propose a mathematical framework and a dynamic phase-shift algorithm (D-PSA) for a dense surface profilometry of moving objects. We also present a fringe pattern projection system with projector and camera arrays, with an aim to reduce the undesirable effects such as the uneven illumination and the perspective geometry effect on the reconstructed surface using a large field-of-view inspection system. This system is then applied to the inspection of the surface of moving printed circuit boards along a conveyor belt. Experimental results show that our approach can reconstruct the object surface effectively and efficiently. © 2013 IEEE.published_or_final_versio

    Adaptive neural network filter for visual evoked potential estimation

    Get PDF
    The authors describe a new approach to enhance the signal-to-noise-ratio (SNR) of visual evoked potential (VEP) based on an adaptive neural network filter. Neural networks are usually used in an nonadaptive way. The weights in the neural network are adjusted during training but remain constant in actual use. Here, the authors use an adaptive neural network filter with adaptation capabilities similar to those of the traditional linear adaptive filter and suitable training scheme is also examined. In contrast with linear adaptive filters, adaptive neural network filters possess nonlinear characteristics which can better match the nonlinear behaviour of evoked potential signals. Simulations employing VEP signals obtained experimentally confirm the superior performance of the adaptive neural network filter against traditional linear adaptive filter.published_or_final_versio

    Regularized multiframe phase-shifting algorithm for three-dimensional profilometry

    Get PDF
    In many industrial inspection systems, it is required to have a high-precision three-dimensional measurement of an object under test. A popular technique is phase-measuring profilometry. In this paper, we develop some phase-shifting algorithms (PSAs). We propose a novel smoothness constraint in a regularization framework; we call this the R-PSA method and show how to obtain the desired phase measure with an iterative procedure. Both the simulation and experimental results verify the efficacy of our algorithm compared with current multiframe PSAs for interferometric measurements.published_or_final_versio

    Three-dimensional reconstruction of wafer solder bumps using binary pattern projection

    Get PDF
    As the electronic industry advances rapidly, the shrunk dimension of the device leads to more stringent requirement on process control and quality assurance. For instance, the tiny size of the solder bumps grown on wafers for direct die-to-die bonding pose great challenge to the inspection of the bumps' 3D quality. Traditional pattern projection method of recovering 3D is about projecting a light pattern to the inspected surface and imaging the illuminated surface from one or more points of view. However, image saturation and the specular nature of the bump surface are issues. This paper proposes a new 3D reconstruction mechanism for inspecting the surface of such wafer bumps. It is still based upon the light pattern projection framework, but uses the Ronchi pattern - a pattern that contrasts with the traditionally used gray level one. With the use of a parallel or point light source in combination with a binary grating, it allows a discrete pattern to be projected onto the inspected surface. As the projected pattern is binary, the image information is binary as well. With such a bright-or-dark world for each image position, the above-mentioned difficult issues are avoided. Preliminary study shows that the mechanism holds promises that existing approaches do not. © 2005 SPIE and IS&T.published_or_final_versio

    Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction

    Get PDF
    Advanced electronic manufacturing requires the 3-D inspection of very small surfaces like the solder bumps on wafers for direct die-to-die bonding. Yet the microscopic size and highly specular and textureless nature of the surfaces make the task difficult. It is also demanded that the size of the entire inspection system be small so as to minimize restraint on the operation of the various moving parts involved in the manufacturing process. In this paper, we describe a new 3-D reconstruction mechanism for the task. The mechanism is based upon the well-known concept of structured-light projection, but adapted to a new configuration that owns a particularly small system size and operates in a different manner. Unlike the traditional mechanisms which involve an array of light sources that occupy a rather extended physical space, the proposed mechanism consists of only a single light source plus a binary grating for projecting binary pattern. To allow the projection at each position of the inspected surface to vary and form distinct binary code, the binary grating is shifted in space. In every shift, a separate image of the illuminated surface is taken. With the use of pattern projection, and of discrete coding instead of analog coding in the projection, issues like texture-absence, image saturation, and image noise of the inspected surfaces are much lessened. Experimental results on a variety of objects are presented to illustrate the effectiveness of this mechanism. © 2008 IEEE.published_or_final_versio

    An illumination-invariant phase-shifting algorithm for three-dimensional profilometry

    Get PDF
    Image Processing: Machine Vision Applications V, Burlingame, California, USA, 22 January, 2012Uneven illumination is a common problem in real optical systems for machine vision applications, and it contributes significant errors when using phase-shifting algorithms (PSA) to reconstruct the surface of a moving object. Here, we propose an illumination-reflectivity-focus (IRF) model to characterize this uneven illumination effect on phase-measuring profilometry. With this model, we separate the illumination factor effectively, and then formulate the phase reconstruction as an optimization problem. To simplify the optimization process, we calibrate the uneven illumination distribution beforehand, and then use the calibrated illumination information during surface profilometry. After calibration, the degrees of freedom are reduced. Accordingly, we develop a novel illumination-invariant phase-shifting algorithm (II-PSA) to reconstruct the surface of a moving object under an uneven illumination environment. Experimental results show that the proposed algorithm can improve the reconstruction quality both visually and numerically. Therefore, using this IRF model and the corresponding II-PSA, not only can we handle uneven illumination in a real optical system with a large field of view (FOV), but we also develop a robust and efficient method for reconstructing the surface of a moving object. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).link_to_subscribed_fulltextpublished_or_final_versio

    Projection optics design for tilted projection of fringe patterns

    Get PDF
    A challenge in the semiconductor industry is 3-D inspection of the miniaturized solder bumps grown on wafers for direct die-to-die bonding. An inspection mechanism proposed earlier requires the projection of a binary fringe grating to the inspected surface from an inclined angle. For high speed and accuracy of the mechanism, the projection optics has to meet these requirements: (1) it allows a tilt angle between the inspected surface and the projector's optical axis; (2) it has a high bandwidth to let high-spatial-frequency harmonics contained in the binary grating pass through the lens and be projected onto the inspected surface properly; (3) it has a high modulation transfer function; (4) it has a large field of view; and (5) it has an adequate depth of field that matches the depth range of the inspected surface. In this paper, we describe a projection optics design, consisting of a fringe grating and several pieces of spherical lens, that addresses the requirements. To reduce the lens aberrations, the grating is laid out with an angle chosen specifically to make the grating, the lens, and the average plane of the inspected surface intersect in the same line. Performance analysis and tolerance analysis are shown to demonstrate the feasibility of the design. © 2008 Society of Photo-Optical Instrumentation Engineers.published_or_final_versio

    Fast measurement of SEP for monitoring spinal cord during scoliosis

    Get PDF
    Recently there has been considerable interest in the use of somatosensory evoked potential (SEP) for monitoring the functional integrity of the spinal cord during surgery such as scoliosis. This paper describes a monitoring system and signal processing algorithms, which consist of an artificial neural network filter and a wavelet signal enhancer developed to enhance the signal-to-noise ratio (SNR) of surface recorded SEP. Our system allows fast detection of change in SEP's peak latency, amplitude and signal waveform, which are the main parameters of interest during intra-operative procedures.published_or_final_versionThe 20th IEEE Engineering in Medicine and Biology Society Conference Proceedings, Hong Kong, China, 29 October - 1 November 1998, v. 4, p. 2239-224
    corecore